Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ranking and Invariants for Lower-Bound Inference in Quantitative Verification of Probabilistic Programs (2504.04132v1)

Published 5 Apr 2025 in cs.LO

Abstract: Quantitative properties of probabilistic programs are often characterised by the least fixed point of a monotone function $K$. Giving lower bounds of the least fixed point is crucial for quantitative verification. We propose a new method for obtaining lower bounds of the least fixed point. Drawing inspiration from the verification of non-probabilistic programs, we explore the relationship between the uniqueness of fixed points and program termination, and then develop a framework for lower-bound verification. We introduce a generalisation of ranking supermartingales, which serves as witnesses to the uniqueness of fixed points. Our method can be applied to a wide range of quantitative properties, including the weakest preexpectation, expected runtime, and higher moments of runtime. We provide a template-based algorithm for the automated verification of lower bounds. Our implementation demonstrates the effectiveness of the proposed method via an experiment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube