Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting Malicious AI Agents Through Simulated Interactions (2504.03726v1)

Published 31 Mar 2025 in cs.CR, cs.AI, and cs.LG

Abstract: This study investigates malicious AI Assistants' manipulative traits and whether the behaviours of malicious AI Assistants can be detected when interacting with human-like simulated users in various decision-making contexts. We also examine how interaction depth and ability of planning influence malicious AI Assistants' manipulative strategies and effectiveness. Using a controlled experimental design, we simulate interactions between AI Assistants (both benign and deliberately malicious) and users across eight decision-making scenarios of varying complexity and stakes. Our methodology employs two state-of-the-art LLMs to generate interaction data and implements Intent-Aware Prompting (IAP) to detect malicious AI Assistants. The findings reveal that malicious AI Assistants employ domain-specific persona-tailored manipulation strategies, exploiting simulated users' vulnerabilities and emotional triggers. In particular, simulated users demonstrate resistance to manipulation initially, but become increasingly vulnerable to malicious AI Assistants as the depth of the interaction increases, highlighting the significant risks associated with extended engagement with potentially manipulative systems. IAP detection methods achieve high precision with zero false positives but struggle to detect many malicious AI Assistants, resulting in high false negative rates. These findings underscore critical risks in human-AI interactions and highlight the need for robust, context-sensitive safeguards against manipulative AI behaviour in increasingly autonomous decision-support systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.