Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

VFlow: Discovering Optimal Agentic Workflows for Verilog Generation (2504.03723v1)

Published 30 Mar 2025 in cs.AR and cs.MA

Abstract: Hardware design automation faces challenges in generating high-quality Verilog code efficiently. This paper introduces VFlow, an automated framework that optimizes agentic workflows for Verilog code generation. Unlike existing approaches that rely on pre-defined prompting strategies, VFlow leverages Monte Carlo Tree Search (MCTS) to discover effective sequences of LLMs invocations that maximize code quality while minimizing computational costs. VFlow extends the AFLOW methodology with domain-specific operators addressing hardware design requirements, including syntax validation, simulation-based verification, and synthesis optimization. Experimental evaluation on the VerilogEval benchmark demonstrates VFlow's superiority, achieving an 83.6% average pass@1 rate-a 6.1\% improvement over state-of-the-art PromptV and a 36.9\% gain compared to direct LLM invocation. Most significantly, VFlow enhances the capabilities of smaller models, enabling DeepSeek-V3 to achieve 141.2\% of GPT-4o's performance while reducing API costs to just 13\%. These findings indicate that intelligently optimized workflows enable cost-efficient LLMs to outperform larger models on hardware design tasks, potentially democratizing access to advanced digital circuit development tools and accelerating innovation in the semiconductor industry

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.