What People Share With a Robot When Feeling Lonely and Stressed and How It Helps Over Time (2504.02991v1)
Abstract: Loneliness and stress are prevalent among young adults and are linked to significant psychological and health-related consequences. Social robots may offer a promising avenue for emotional support, especially when considering the ongoing advancements in conversational AI. This study investigates how repeated interactions with a social robot influence feelings of loneliness and perceived stress, and how such feelings are reflected in the themes of user disclosures towards the robot. Participants engaged in a five-session robot-led intervention, where a LLM powered QTrobot facilitated structured conversations designed to support cognitive reappraisal. Results from linear mixed-effects models show significant reductions in both loneliness and perceived stress over time. Additionally, semantic clustering of 560 user disclosures towards the robot revealed six distinct conversational themes. Results from a Kruskal-Wallis H-test demonstrate that participants reporting higher loneliness and stress more frequently engaged in socially focused disclosures, such as friendship and connection, whereas lower distress was associated with introspective and goal-oriented themes (e.g., academic ambitions). By exploring both how the intervention affects well-being, as well as how well-being shapes the content of robot-directed conversations, we aim to capture the dynamic nature of emotional support in huma-robot interaction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.