Papers
Topics
Authors
Recent
Search
2000 character limit reached

Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning

Published 3 Apr 2025 in astro-ph.SR and astro-ph.IM | (2504.02232v1)

Abstract: The statistical properties of double main sequence (MS) binaries are very important for binary evolution and binary population synthesis. To obtain these properties, we need to identify these MS binaries. In this paper, we have developed a method to differentiate single MS stars from double MS binaries from the Chinese Space Station Telescope (CSST) Survey with machine learning. This method is reliable and efficient to identify binaries with mass ratios between 0.20 and 0.80, which is independent of the mass ratio distribution. But the number of binaries identified with this method is not a good approximation to the number of binaries in the original sample due to the low detection efficiency of binaries with mass ratios smaller than 0.20 or larger than 0.80. Therefore, we have improved this point by using the detection efficiencies of our method and an empirical mass ratio distribution and then can infer the binary fraction in the sample. Once the CSST data are available, we can identify MS binaries with our trained multi-layer perceptron model and derive the binary fraction of the sample.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.