Adjoint-based optimization of the Rayleigh-Bénard instability with melting boundary (2503.23831v2)
Abstract: In this work, we propose an adjoint-based optimization procedure to control the onset of the Rayleigh-B\'enard instability with a melting front. A novel cut cell method is used to solve the Navier-Stokes equations in the Boussinesq approximation and the convection-diffusion equation in the fluid layer, as well as the heat equation in the solid phase. To track the interface we use the level set method where its evolution is simply governed by an advection equation. An incomplete continuous adjoint problem is then derived by considering that the velocity field is a check-pointing variable. The results of the minimization problem with a tracking-type cost-functional show that our adjoint method is well suited to optimize the shapes of the fronts in this configuration.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.