The Gronwall inequality (2503.23639v1)
Abstract: We prove the following version generalization of the Gronwall inequality: Let $\mathbf X$ be a Banach space and $U\subset \mathbf X$ an open convex set in $\mathbf X$. Let $f,g\colon [a,b]\times U\to \mathbf X$ be continuous functions and let $y,z\colon [a,b]\to U$ satisfy the initial value problems \begin{align*} y'(t)&=f(t,y(t)),\quad y(a)=y_0,\ z'(t)&=g(t,z(t)),\quad z(a)=z_0. \end{align*} Also assume there is a constant $C\ge 0$ so that $$ |g(t,x_2)-g(t,x_1)|\le C|x_2-x_1| $$ and a continuous function $\phi\colon [a,b]\to [0,\infty)$ so that $$ |f(t,y(t))-g(t,y(t))|\le \phi(t). $$ Then for $t\in [a,b]$ $$ |y(t)-z(t)| \le e{C|t-a|}|y_0-z_0|+e{C|t-a|}\int_ate{-C|s-a|}\phi(s)\,ds. $$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.