Papers
Topics
Authors
Recent
2000 character limit reached

Computing Isomorphisms between Products of Supersingular Elliptic Curves

Published 27 Mar 2025 in math.NT, cs.CR, and cs.SC | (2503.21535v1)

Abstract: The Deligne-Ogus-Shioda theorem guarantees the existence of isomorphisms between products of supersingular elliptic curves over finite fields. In this paper, we present methods for explicitly computing these isomorphisms in polynomial time, given the endomorphism rings of the curves involved. Our approach leverages the Deuring correspondence, enabling us to reformulate computational isogeny problems into algebraic problems in quaternions. Specifically, we reduce the computation of isomorphisms to solving systems of quadratic and linear equations over the integers derived from norm equations. We develop $\ell$-adic techniques for solving these equations when we have access to a low discriminant subring. Combining these results leads to the description of an efficient probabilistic Las Vegas algorithm for computing the desired isomorphisms. Under GRH, it is proved to run in expected polynomial time.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.