Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SEAlign: Alignment Training for Software Engineering Agent (2503.18455v1)

Published 24 Mar 2025 in cs.SE

Abstract: Recent advances in code generation models have demonstrated impressive capabilities in automating software development tasks, yet these models still struggle in real-world software engineering scenarios. Although current training methods, particularly post-training, excel at solving competitive programming problems, they fail to adequately prepare models for the complexities of practical software development. This misalignment raises the critical question: Are existing alignment training methods well suited for real-world software engineering tasks? In this study, we identify this issue and propose SEAlign, a novel alignment framework designed to bridge the gap between code generation models and real-world software development tasks. SEAlign leverages the unique characteristics of software engineering processes, including high-quality workflow steps, to enhance model capabilities. Our framework further employs Monte Carlo Tree Search for fine-grained alignment in multi-step decision processes, followed by preference optimization on critical actions to ensure models meet real-world requirements. We evaluate SEAlign on three standard agentic benchmarks for real-world software engineering, including HumanEvalFix, SWE-Bench-Lite, and SWE-Bench-Verified. Experimental results demonstrate state-of-the-art performance with minimal training overhead. In addition, we develop an agent-based software development platform using SEAlign, which successfully automates the creation of several small applications. Human evaluations of these applications highlight significant improvements in both task performance and user experience. Our findings underscore the potential of SEAlign to accelerate the adoption of large code models in real-world software development. We believe that this research makes a meaningful step towards fully automated software engineering.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube