Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Malliavin Calculus for Score-based Diffusion Models (2503.16917v2)

Published 21 Mar 2025 in cs.LG and math.PR

Abstract: We introduce a new framework based on Malliavin calculus to derive exact analytical expressions for the score function $\nabla \log p_t(x)$, i.e., the gradient of the log-density associated with the solution to stochastic differential equations (SDEs). Our approach combines classical integration-by-parts techniques with modern stochastic analysis tools, such as Bismut's formula and Malliavin calculus, and it works for both linear and nonlinear SDEs. In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint, the Malliavin divergence (Skorokhod integral), and diffusion generative models, thereby providing a systematic method for computing $\nabla \log p_t(x)$. In the linear case, we present a detailed analysis showing that our formula coincides with the analytical score function derived from the solution of the Fokker--Planck equation. For nonlinear SDEs with state-independent diffusion coefficients, we derive a closed-form expression for $\nabla \log p_t(x)$. We evaluate the proposed framework across multiple generative tasks and find that its performance is comparable to state-of-the-art methods. These results can be generalised to broader classes of SDEs, paving the way for new score-based diffusion generative models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.