Papers
Topics
Authors
Recent
2000 character limit reached

Control, Optimal Transport and Neural Differential Equations in Supervised Learning (2503.15105v3)

Published 19 Mar 2025 in math.NA, cs.LG, cs.NA, and math.OC

Abstract: We study the fundamental computational problem of approximating optimal transport (OT) equations using neural differential equations (Neural ODEs). More specifically, we develop a novel framework for approximating unbalanced optimal transport (UOT) in the continuum using Neural ODEs. By generalizing a discrete UOT problem with Pearson divergence, we constructively design vector fields for Neural ODEs that converge to the true UOT dynamics, thereby advancing the mathematical foundations of computational transport and machine learning. To this end, we design a numerical scheme inspired by the Sinkhorn algorithm to solve the corresponding minimization problem and rigorously prove its convergence, providing explicit error estimates. From the obtained numerical solutions, we derive vector fields defining the transport dynamics and construct the corresponding transport equation. Finally, from the numerically obtained transport equation, we construct a neural differential equation whose flow converges to the true transport dynamics in an appropriate limiting regime.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.