Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Using Matrix-Free Tensor Decompositions to Systematically Improve Approximate Tensor-Networks (2503.10380v2)

Published 13 Mar 2025 in physics.chem-ph

Abstract: We investigate a novel approach to approximate tensor-network contraction via the exact, matrix-free decomposition of full tensor-networks. We study this method as a means to eliminate the propagation of error in the approximation of tensor-networks. Importantly, this decomposition-based approach is generic, i.e. it does not depend on a specific tensor-network, the tensor index (physical) ordering, or the choice of tensor decomposition. Careful consideration should be made to determine the best decomposition strategy. Furthermore, this method does not rely on robust cancellation of errors (i.e. the Taylor expansion). As a means to study the effectiveness of the approach, we replace the exact contraction of the particle particle ladder (PPL) tensor diagram in the popular coupled-cluster with single and double excitation (CCSD) method with a low-rank tensor decomposition, namely the canonical polyadic decomposition (CPD). With this approach, we replace an $\mathcal{O}(N6)$ tensor contractions with a potentially reduced-scaling $\mathcal{O}(N4R)$ optimization problem, where $R$ is the CP rank, and we reduce the computational storage of the PPL tensor from $\mathcal{O}(N4)$ to $\mathcal{O}(NR)$, although we do not take advantage of this compression in this study. To minimize the cost of the CPD optimization, we utilize the iterative structure of CCSD to efficiently initialize the CPD optimization. We show that accurate chemically-relevant energy values can be computed with an error of less than 1 kcal/mol using a relatively low CP rank.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)