Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tensor-decomposition techniques for ab initio nuclear structure calculations. From chiral nuclear potentials to ground-state energies (1810.08419v1)

Published 19 Oct 2018 in nucl-th, physics.chem-ph, and physics.comp-ph

Abstract: The impact of applying state-of-the-art tensor factorization techniques to modern nuclear Hamiltonians derived from chiral effective field theory is investigated. Subsequently, the error induced by the tensor decomposition of the input Hamiltonian on ground-state energies of closed-shell nuclei calculated via second-order many-body perturbation theory is benchmarked. With the aid of the factorized Hamiltonian, the second-order perturbative correction to ground-state energies is decomposed and the scaling properties of the underlying tensor network are discussed. The employed tensor formats are found to lead to an efficient data compression of two-body matrix elements of the nuclear Hamiltonian. In particular, the sophisticated \emph{tensor hypercontraction} (THC) scheme yields low tensor ranks with respect to both harmonic-oscillator and Hartree-Fock single-particle bases. It is found that the tensor rank depends on the two-body total angular momentum $J$ for which one performs the decomposition, which is itself directly related to the sparsity the corresponding tensor. Furthermore, including normal-ordered two-body contributions originating from three-body interactions does not compromise the efficient data compression. Ultimately, the use of factorized matrix elements authorizes controlled approximations of the exact second-order ground-state energy corrections. In particular, a small enough error is obtained from low-rank factorizations in ${4}$He, ${16}$O and ${40}$Ca.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube