Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Real-Time Semantic Segmentation of Aerial Images Using an Embedded U-Net: A Comparison of CPU, GPU, and FPGA Workflows (2503.08700v1)

Published 7 Mar 2025 in cs.CV, cs.AI, cs.AR, and cs.LG

Abstract: This study introduces a lightweight U-Net model optimized for real-time semantic segmentation of aerial images, targeting the efficient utilization of Commercial Off-The-Shelf (COTS) embedded computing platforms. We maintain the accuracy of the U-Net on a real-world dataset while significantly reducing the model's parameters and Multiply-Accumulate (MAC) operations by a factor of 16. Our comprehensive analysis covers three hardware platforms (CPU, GPU, and FPGA) and five different toolchains (TVM, FINN, Vitis AI, TensorFlow GPU, and cuDNN), assessing each on metrics such as latency, power consumption, memory footprint, energy efficiency, and FPGA resource usage. The results highlight the trade-offs between these platforms and toolchains, with a particular focus on the practical deployment challenges in real-world applications. Our findings demonstrate that while the FPGA with Vitis AI emerges as the superior choice due to its performance, energy efficiency, and maturity, it requires specialized hardware knowledge, emphasizing the need for a balanced approach in selecting embedded computing solutions for semantic segmentation tasks

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.