Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hyperbolization and geometric decomposition of a class of 3-manifolds (2503.07421v1)

Published 10 Mar 2025 in math.GT

Abstract: Thurston's triangulation conjecture asserts that every hyperbolic 3-manifold admits a geometric triangulation into hyper-ideal hyperbolic tetrahedra. So far, this conjecture had only been proven for a few special 3-manifolds. In this article, we confirm this conjecture for a class of 3-manifolds. To be precise, let $M$ be an oriented compact 3-manifold with boundary, no component of which is a 2-sphere, and $\mathcal{T}$ is an ideal triangulation of $M$. If $\mathcal{T}$ satisfies properly gluing condition, and the valence is at least 6 at each ideal edge and 11 at each hyper-ideal edge, then $M$ admits an unique complete hyperbolic metric with totally geodesic boundary, so that $\mathcal{T}$ is isotopic to a geometric ideal triangulation of $M$. We use analytical tools such as combinatorial Ricci flow (CRF, abbr.) to derive the conclusions. There are intrinsic difficulties in dealing with CRF. First, the CRF may collapse in a finite time, second, most of the smooth curvature flow methods are no longer applicable since there is no local coordinates in $\mathcal{T}$, and third, the evolution of CRF is affected by certain combinatorial obstacles in addition to topology. To this end, we introduce the ideas as extending CRF",tetrahedral comparison principles", and ``control CRF with edge valence" to solve the above difficulties. In addition, the presence of torus boundary adds substantial difficulties in this article, which we have solved by introducing the properly gluing conditions on $\mathcal{T}$ and reducing the ECRF to a flow relatively easy to handle.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.