Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Wave Kinetic Equation in the presence of forcing and dissipation (2503.05462v1)

Published 7 Mar 2025 in nlin.CD

Abstract: The wave kinetic equation has become an important tool in different fields of physics. In particular, for surface gravity waves, it is the backbone of wave forecasting models. Its derivation is based on the Hamiltonian dynamics of surface gravity waves. Only at the end of the derivation are the non-conservative effects, such as forcing and dissipation, included as additional terms to the collision integral. In this paper, we present a first attempt to derive the wave kinetic equation when the dissipation/forcing is included in the deterministic dynamics. If, in the dynamical equations, the dissipation/forcing is one order of magnitude smaller than the nonlinear effect, then the classical wave action balance equation is obtained and the kinetic time scale corresponds to the dissipation/forcing time scale. However, if we assume that the nonlinearity and the dissipation/forcing act on the same dynamical time scale, we find that the dissipation/forcing dominates the dynamics and the resulting collision integral appears in a modified form, at a higher order.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.