Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the derivation of the homogeneous kinetic wave equation (1912.10368v3)

Published 22 Dec 2019 in math.AP, math-ph, and math.MP

Abstract: The nonlinear Schr\"odinger equation in the weakly nonlinear regime with random Gaussian fields as initial data is considered. The problem is set on the torus in any dimension greater than two. A conjecture in statistical physics is that there exists a kinetic time scale depending on the frequency localisation of the data and on the strength of the nonlinearity, on which the expectation of the squares of moduli of Fourier modes evolve according to an effective equation: the so-called kinetic wave equation. When the kinetic time for our setup is $1$, we prove this conjecture up to an arbitrarily small polynomial loss. When the kinetic time is larger than $1$, we obtain its validity on a more restricted time scale. The key idea of the proof is the use of Feynman interaction diagrams both in the construction of an approximate solution and in the study of its nonlinear stability. We perform a truncated series expansion in the initial data, and obtain bounds in average in various function spaces for its elements. The linearised dynamics then involves a linear Schr\"odinger equation with a corresponding random potential. We bound the expectation of the operator norm in Bourgain spaces using diagrams and random matrix tools. This gives a new approach for the analysis of nonlinear wave equations out of equilibrium, and gives hope that refinements of the method could help settle the conjecture.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.