Contact big fiber theorems (2503.04277v2)
Abstract: We prove contact big fiber theorems, analogous to the symplectic big fiber theorem by Entov and Polterovich, using symplectic cohomology with support. Unlike in the symplectic case, the validity of the statements requires conditions on the closed contact manifold. One such condition is to admit a Liouville filling with non-zero symplectic cohomology. In the case of Boothby-Wang contact manifolds, we prove the result under the condition that the Euler class of the circle bundle, which is the negative of an integral lift of the symplectic class, is not an invertible element in the quantum cohomology of the base symplectic manifold. As applications, we obtain new examples of rigidity of intersections in contact manifolds and also of contact non-squeezing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.