Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A note on Stein fillability of circle bundles over symplectic manifolds (2404.14028v1)

Published 22 Apr 2024 in math.GT and math.SG

Abstract: We show that, given a closed integral symplectic manifold $(\Sigma, \omega)$ of dimension $2n \geq 4$, for every integer $k>\int_{\Sigma}\omega{n}$, the Boothby-Wang bundle over $(\Sigma, k\omega)$ carries no Stein fillable contact structure. This negatively answers a question raised by Eliashberg. A similar result holds for Boothby-Wang orbibundles. As an application, we prove the non-smoothability of some isolated singularities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Orbifolds and stringy topology, volume 171 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2007.
  2. The topology of Stein fillable manifolds in high dimensions I. Proc. Lond. Math. Soc. (3), 109(6):1363–1401, 2014.
  3. Existence and classification of overtwisted contact structures in all dimensions. Acta Math., 215(2):281–361, 2015.
  4. Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008.
  5. Paul Biran. Lagrangian barriers and symplectic embeddings. Geom. Funct. Anal., 11(3):407–464, 2001.
  6. Paul Biran. Symplectic topology and algebraic families. In European Congress of Mathematics, pages 827–836. Eur. Math. Soc., Zürich, 2005.
  7. From Stein to Weinstein and back, volume 59 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds.
  8. Sylvain Courte. AIM workshop - contact topology in higher dimensions: Questions and open problems. available at https://aimath.org/WWN/contacttop/notes_contactworkshop2012.pdf, 2012.
  9. Symplectic homology of complements of smooth divisors. J. Topol., 12(3):967–1030, 2019.
  10. Simon K. Donaldson. Symplectic submanifolds and almost-complex geometry. J. Differential Geom., 44(4):666–705, 1996.
  11. John B. Etnyre and Ko Honda. On the nonexistence of tight contact structures. Ann. of Math. (2), 153(3):749–766, 2001.
  12. Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol., 10:1635–1747, 2006.
  13. Y. Eliashberg. Classification of overtwisted contact structures on 3333-manifolds. Invent. Math., 98(3):623–637, 1989.
  14. Emmanuel Giroux. Remarks on Donaldson’s symplectic submanifolds. Pure Appl. Math. Q., 13(3):369–388, 2017.
  15. Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer, Berlin, 2007.
  16. Hans Grauert. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146:331–368, 1962.
  17. Gert-Martin Greuel. Deformation and smoothing of singularities. In Handbook of geometry and topology of singularities. I, pages 389–448. Springer, Cham, [2020] ©2020.
  18. 4444-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999.
  19. A Boothby-Wang theorem for Besse contact manifolds. Arnold Math. J., 7(2):225–241, 2021.
  20. Rational ruled surfaces as symplectic hyperplane sections. Trans. Amer. Math. Soc., 376(7):4811–4833, 2023.
  21. Ozsváth-Szabó invariants and tight contact three-manifolds. II. J. Differential Geom., 75(1):109–141, 2007.
  22. J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.
  23. Patrick Popescu-Pampu. On the cohomology rings of holomorphically fillable manifolds. In Singularities II, volume 475 of Contemp. Math., pages 169–188. Amer. Math. Soc., Providence, RI, 2008.
  24. Patrick Popescu-Pampu. Complex singularities and contact topology. Winter Braids Lect. Notes, 3:Exp. No. 3, 74, 2016.
  25. Zhengyi Zhou. (ℝ⁢ℙ2⁢n−1,ξstd)ℝsuperscriptℙ2𝑛1subscript𝜉std(\mathbb{RP}^{2n-1},\xi_{\rm std})( blackboard_R blackboard_P start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT , italic_ξ start_POSTSUBSCRIPT roman_std end_POSTSUBSCRIPT ) is not exactly fillable for n≠2k𝑛superscript2𝑘n\neq 2^{k}italic_n ≠ 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Geom. Topol., 25(6):3013–3052, 2021.
  26. Zhengyi Zhou. On fillings of contact links of quotient singularities. J. Topol., 17(1):Paper No. e12329, 53, 2024.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.