2000 character limit reached
A note on Stein fillability of circle bundles over symplectic manifolds (2404.14028v1)
Published 22 Apr 2024 in math.GT and math.SG
Abstract: We show that, given a closed integral symplectic manifold $(\Sigma, \omega)$ of dimension $2n \geq 4$, for every integer $k>\int_{\Sigma}\omega{n}$, the Boothby-Wang bundle over $(\Sigma, k\omega)$ carries no Stein fillable contact structure. This negatively answers a question raised by Eliashberg. A similar result holds for Boothby-Wang orbibundles. As an application, we prove the non-smoothability of some isolated singularities.
- Orbifolds and stringy topology, volume 171 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2007.
- The topology of Stein fillable manifolds in high dimensions I. Proc. Lond. Math. Soc. (3), 109(6):1363–1401, 2014.
- Existence and classification of overtwisted contact structures in all dimensions. Acta Math., 215(2):281–361, 2015.
- Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008.
- Paul Biran. Lagrangian barriers and symplectic embeddings. Geom. Funct. Anal., 11(3):407–464, 2001.
- Paul Biran. Symplectic topology and algebraic families. In European Congress of Mathematics, pages 827–836. Eur. Math. Soc., Zürich, 2005.
- From Stein to Weinstein and back, volume 59 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds.
- Sylvain Courte. AIM workshop - contact topology in higher dimensions: Questions and open problems. available at https://aimath.org/WWN/contacttop/notes_contactworkshop2012.pdf, 2012.
- Symplectic homology of complements of smooth divisors. J. Topol., 12(3):967–1030, 2019.
- Simon K. Donaldson. Symplectic submanifolds and almost-complex geometry. J. Differential Geom., 44(4):666–705, 1996.
- John B. Etnyre and Ko Honda. On the nonexistence of tight contact structures. Ann. of Math. (2), 153(3):749–766, 2001.
- Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol., 10:1635–1747, 2006.
- Y. Eliashberg. Classification of overtwisted contact structures on 3333-manifolds. Invent. Math., 98(3):623–637, 1989.
- Emmanuel Giroux. Remarks on Donaldson’s symplectic submanifolds. Pure Appl. Math. Q., 13(3):369–388, 2017.
- Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer, Berlin, 2007.
- Hans Grauert. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146:331–368, 1962.
- Gert-Martin Greuel. Deformation and smoothing of singularities. In Handbook of geometry and topology of singularities. I, pages 389–448. Springer, Cham, [2020] ©2020.
- 4444-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999.
- A Boothby-Wang theorem for Besse contact manifolds. Arnold Math. J., 7(2):225–241, 2021.
- Rational ruled surfaces as symplectic hyperplane sections. Trans. Amer. Math. Soc., 376(7):4811–4833, 2023.
- Ozsváth-Szabó invariants and tight contact three-manifolds. II. J. Differential Geom., 75(1):109–141, 2007.
- J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.
- Patrick Popescu-Pampu. On the cohomology rings of holomorphically fillable manifolds. In Singularities II, volume 475 of Contemp. Math., pages 169–188. Amer. Math. Soc., Providence, RI, 2008.
- Patrick Popescu-Pampu. Complex singularities and contact topology. Winter Braids Lect. Notes, 3:Exp. No. 3, 74, 2016.
- Zhengyi Zhou. (ℝℙ2n−1,ξstd)ℝsuperscriptℙ2𝑛1subscript𝜉std(\mathbb{RP}^{2n-1},\xi_{\rm std})( blackboard_R blackboard_P start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT , italic_ξ start_POSTSUBSCRIPT roman_std end_POSTSUBSCRIPT ) is not exactly fillable for n≠2k𝑛superscript2𝑘n\neq 2^{k}italic_n ≠ 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Geom. Topol., 25(6):3013–3052, 2021.
- Zhengyi Zhou. On fillings of contact links of quotient singularities. J. Topol., 17(1):Paper No. e12329, 53, 2024.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.