Papers
Topics
Authors
Recent
2000 character limit reached

NCL-UoR at SemEval-2025 Task 3: Detecting Multilingual Hallucination and Related Observable Overgeneration Text Spans with Modified RefChecker and Modified SeflCheckGPT (2503.01921v2)

Published 2 Mar 2025 in cs.CL and cs.AI

Abstract: SemEval-2025 Task 3 (Mu-SHROOM) focuses on detecting hallucinations in content generated by various LLMs across multiple languages. This task involves not only identifying the presence of hallucinations but also pinpointing their specific occurrences. To tackle this challenge, this study introduces two methods: modified RefChecker and modified SelfCheckGPT. The modified RefChecker integrates prompt-based factual verification into References, structuring them as claim-based tests rather than single external knowledge sources. The modified SelfCheckGPT incorporates external knowledge to overcome its reliance on internal knowledge. In addition, both methods' original prompt designs are enhanced to identify hallucinated words within LLM-generated texts. Experimental results demonstrate the effectiveness of the approach, achieving a high ranking on the test dataset in detecting hallucinations across various languages, with an average IoU of 0.5310 and an average COR of 0.5669.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.