Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ABFS: Natural Robustness Testing for LLM-based NLP Software (2503.01319v1)

Published 3 Mar 2025 in cs.SE

Abstract: Owing to the exceptional performance of LLMs in NLP tasks, LLM-based NLP software has rapidly gained traction across various domains, such as financial analysis and content moderation. However, these applications frequently exhibit robustness deficiencies, where slight perturbations in input (prompt+example) may lead to erroneous outputs. Current robustness testing methods face two main limitations: (1) low testing effectiveness, limiting the applicability of LLM-based software in safety-critical scenarios, and (2) insufficient naturalness of test cases, reducing the practical value of testing outcomes. To address these issues, this paper proposes ABFS, a straightforward yet effective automated testing method that, for the first time, treats the input prompts and examples as a unified whole for robustness testing. Specifically, ABFS formulates the testing process as a combinatorial optimization problem, employing Best-First Search to identify successful test cases within the perturbation space and designing a novel Adaptive control strategy to enhance test case naturalness. We evaluate the robustness testing performance of ABFS on three datasets across five threat models. On Llama2-13b, the traditional StressTest achieves only a 13.273% success rate, while ABFS attains a success rate of 98.064%, supporting a more comprehensive robustness assessment before software deployment. Compared to baseline methods, ABFS introduces fewer modifications to the original input and consistently generates test cases with superior naturalness. Furthermore, test cases generated by ABFS exhibit stronger transferability and higher testing efficiency, significantly reducing testing costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.