Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Lookahead Limitation: Why Multi-Operand Addition is Hard for LLMs (2502.19981v1)

Published 27 Feb 2025 in cs.CL

Abstract: Autoregressive LLMs exhibit impressive performance across various tasks but struggle with simple arithmetic, such as addition of two or more operands. We show that this struggle arises from LLMs' use of a simple one-digit lookahead heuristic, which works fairly well (but not perfect) for two-operand addition but fails in multi-operand cases, where the carry-over logic is more complex. Our probing experiments and digit-wise accuracy evaluation show that LLMs fail precisely where a one-digit lookahead is insufficient to account for cascading carries. We analyze the impact of tokenization strategies on arithmetic performance and show that all investigated models, regardless of tokenization, are inherently limited in the addition of multiple operands due to their reliance on a one-digit lookahead heuristic. Our findings reveal fundamental limitations that prevent LLMs from generalizing to more complex numerical reasoning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.