Papers
Topics
Authors
Recent
2000 character limit reached

Talking to the brain: Using Large Language Models as Proxies to Model Brain Semantic Representation (2502.18725v1)

Published 26 Feb 2025 in cs.AI, cs.CL, and q-bio.NC

Abstract: Traditional psychological experiments utilizing naturalistic stimuli face challenges in manual annotation and ecological validity. To address this, we introduce a novel paradigm leveraging multimodal LLMs as proxies to extract rich semantic information from naturalistic images through a Visual Question Answering (VQA) strategy for analyzing human visual semantic representation. LLM-derived representations successfully predict established neural activity patterns measured by fMRI (e.g., faces, buildings), validating its feasibility and revealing hierarchical semantic organization across cortical regions. A brain semantic network constructed from LLM-derived representations identifies meaningful clusters reflecting functional and contextual associations. This innovative methodology offers a powerful solution for investigating brain semantic organization with naturalistic stimuli, overcoming limitations of traditional annotation methods and paving the way for more ecologically valid explorations of human cognition.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.

Reddit Logo Streamline Icon: https://streamlinehq.com