Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SECURA: Sigmoid-Enhanced CUR Decomposition with Uninterrupted Retention and Low-Rank Adaptation in Large Language Models (2502.18168v4)

Published 25 Feb 2025 in cs.CL and cs.AI

Abstract: With the rapid development of LLMs, fully fine-tuning (FT) these models is becoming increasingly infeasible due to high computational demands. Moreover, FT also increases the risk of catastrophic forgetting. As an alternative, Low-Rank Adaptation (LoRA) has been proposed. By fine-tuning only a small subset of parameters, LoRA achieves performance similar to FT while significantly reducing resource requirements. However, since LoRA inherits FT's design, the issue of catastrophic forgetting still remains. To address these limitations, we propose SECURA: Sigmoid-Enhanced CUR Decomposition LoRA, a novel PEFT variant designed to mitigate catastrophic forgetting while improving fine-tuning performance. Our method introduces a novel normalization technique, Sigmoid-based Magnitude Norm (S-MagNorm), which enhances parameter retention and fine-tuning efficiency. SECURA has been evaluated on a diverse range of tasks, including mathematical problem-solving (GSM8K), complex question-answering (CNNDM), translation (NewsDE), and complex multiple-choice reasoning (LogiQA). Experimental results demonstrate that it achieves an average fine-tuning improvement of 3.59% across four MCQ tasks and 2.51% across five QA tasks on Gemma2 2B, Qwen2 1.5B, Qwen2 7B, Llama3 8B, and Llama3.1 8B, outperforming DoRA. Additionally, SECURA demonstrates superior knowledge retention capabilities, achieving state-of-the-art performance in 16 continual learning tests and maintaining more than 70% accuracy on LLMs' basic knowledge compared to Experience Replay (ER), sequential learning (SEQ), EWC, I-LoRA, and CUR-LoRA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com