Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning (2502.16198v1)

Published 22 Feb 2025 in cs.NI, cs.AI, cs.ET, and cs.LG

Abstract: 6G networks aim to achieve global coverage, massive connectivity, and ultra-stringent requirements. Space-Air-Ground Integrated Networks (SAGINs) and Semantic Communication (SemCom) are essential for realizing these goals, yet they introduce considerable complexity in resource orchestration. Drawing inspiration from research in robotics, a viable solution to manage this complexity is the application of LLMs. Although the use of LLMs in network orchestration has recently gained attention, existing solutions have not sufficiently addressed LLM hallucinations or their adaptation to network dynamics. To address this gap, this paper proposes a framework called Autonomous Reinforcement Coordination (ARC) for a SemCom-enabled SAGIN. This framework employs an LLM-based Retrieval-Augmented Generator (RAG) monitors services, users, and resources and processes the collected data, while a Hierarchical Action Planner (HAP) orchestrates resources. ARC decomposes orchestration into two tiers, utilizing LLMs for high-level planning and Reinforcement Learning (RL) agents for low-level decision-making, in alignment with the Mixture of Experts (MoE) concept. The LLMs utilize Chain-of-Thought (CoT) reasoning for few-shot learning, empowered by contrastive learning, while the RL agents employ replay buffer management for continual learning, thereby achieving efficiency, accuracy, and adaptability. Simulations are provided to demonstrate the effectiveness of ARC, along with a comprehensive discussion on potential future research directions to enhance and upgrade ARC.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.