Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Set a Thief to Catch a Thief: Combating Label Noise through Noisy Meta Learning (2502.16104v1)

Published 22 Feb 2025 in cs.LG and cs.CV

Abstract: Learning from noisy labels (LNL) aims to train high-performance deep models using noisy datasets. Meta learning based label correction methods have demonstrated remarkable performance in LNL by designing various meta label rectification tasks. However, extra clean validation set is a prerequisite for these methods to perform label correction, requiring extra labor and greatly limiting their practicality. To tackle this issue, we propose a novel noisy meta label correction framework STCT, which counterintuitively uses noisy data to correct label noise, borrowing the spirit in the saying ``Set a Thief to Catch a Thief''. The core idea of STCT is to leverage noisy data which is i.i.d. with the training data as a validation set to evaluate model performance and perform label correction in a meta learning framework, eliminating the need for extra clean data. By decoupling the complex bi-level optimization in meta learning into representation learning and label correction, STCT is solved through an alternating training strategy between noisy meta correction and semi-supervised representation learning. Extensive experiments on synthetic and real-world datasets demonstrate the outstanding performance of STCT, particularly in high noise rate scenarios. STCT achieves 96.9% label correction and 95.2% classification performance on CIFAR-10 with 80% symmetric noise, significantly surpassing the current state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube