Binary Outcome Models with Extreme Covariates: Estimation and Prediction (2502.16041v1)
Abstract: This paper presents a novel semiparametric method to study the effects of extreme events on binary outcomes and subsequently forecast future outcomes. Our approach, based on Bayes' theorem and regularly varying (RV) functions, facilitates a Pareto approximation in the tail without imposing parametric assumptions beyond the tail. We analyze cross-sectional as well as static and dynamic panel data models, incorporate additional covariates, and accommodate the unobserved unit-specific tail thickness and RV functions in panel data. We establish consistency and asymptotic normality of our tail estimator, and show that our objective function converges to that of a panel Logit regression on tail observations with the log extreme covariate as a regressor, thereby simplifying implementation. The empirical application assesses whether small banks become riskier when local housing prices sharply decline, a crucial channel in the 2007--2008 financial crisis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.