Almost AI, Almost Human: The Challenge of Detecting AI-Polished Writing (2502.15666v2)
Abstract: The growing use of LLMs for text generation has led to widespread concerns about AI-generated content detection. However, an overlooked challenge is AI-polished text, where human-written content undergoes subtle refinements using AI tools. This raises a critical question: should minimally polished text be classified as AI-generated? Such classification can lead to false plagiarism accusations and misleading claims about AI prevalence in online content. In this study, we systematically evaluate twelve state-of-the-art AI-text detectors using our AI-Polished-Text Evaluation (APT-Eval) dataset, which contains 14.7K samples refined at varying AI-involvement levels. Our findings reveal that detectors frequently flag even minimally polished text as AI-generated, struggle to differentiate between degrees of AI involvement, and exhibit biases against older and smaller models. These limitations highlight the urgent need for more nuanced detection methodologies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.