Judging It, Washing It: Scoring and Greenwashing Corporate Climate Disclosures using Large Language Models
Abstract: We study the use of LLMs to both evaluate and greenwash corporate climate disclosures. First, we investigate the use of the LLM-as-a-Judge (LLMJ) methodology for scoring company-submitted reports on emissions reduction targets and progress. Second, we probe the behavior of an LLM when it is prompted to greenwash a response subject to accuracy and length constraints. Finally, we test the robustness of the LLMJ methodology against responses that may be greenwashed using an LLM. We find that two LLMJ scoring systems, numerical rating and pairwise comparison, are effective in distinguishing high-performing companies from others, with the pairwise comparison system showing greater robustness against LLM-greenwashed responses.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.