Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cluster Analysis and Concept Drift Detection in Malware (2502.14135v1)

Published 19 Feb 2025 in cs.LG and cs.CR

Abstract: Concept drift refers to gradual or sudden changes in the properties of data that affect the accuracy of machine learning models. In this paper, we address the problem of concept drift detection in the malware domain. Specifically, we propose and analyze a clustering-based approach to detecting concept drift. Using a subset of the KronoDroid dataset, malware samples are partitioned into temporal batches and analyzed using MiniBatch $K$-Means clustering. The silhouette coefficient is used as a metric to identify points in time where concept drift has likely occurred. To verify our drift detection results, we train learning models under three realistic scenarios, which we refer to as static training, periodic retraining, and drift-aware retraining. In each scenario, we consider four supervised classifiers, namely, Multilayer Perceptron (MLP), Support Vector Machine (SVM), Random Forest, and XGBoost. Experimental results demonstrate that drift-aware retraining guided by silhouette coefficient thresholding achieves classification accuracy far superior to static models, and generally within 1% of periodic retraining, while also being far more efficient than periodic retraining. These results provide strong evidence that our clustering-based approach is effective at detecting concept drift, while also illustrating a highly practical and efficient fully automated approach to improved malware classification via concept drift detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.