Papers
Topics
Authors
Recent
Search
2000 character limit reached

Large Language Models Can Help Mitigate Barren Plateaus

Published 17 Feb 2025 in quant-ph, cs.AI, cs.CL, and cs.LG | (2502.13166v1)

Abstract: In the era of noisy intermediate-scale quantum (NISQ) computing, Quantum Neural Networks (QNNs) have emerged as a promising approach for various applications, yet their training is often hindered by barren plateaus (BPs), where gradient variance vanishes exponentially as the model size increases. To address this challenge, we propose a new LLM-driven search framework, AdaInit, that iteratively searches for optimal initial parameters of QNNs to maximize gradient variance and therefore mitigate BPs. Unlike conventional one-time initialization methods, AdaInit dynamically refines QNN's initialization using LLMs with adaptive prompting. Theoretical analysis of the Expected Improvement (EI) proves a supremum for the search, ensuring this process can eventually identify the optimal initial parameter of the QNN. Extensive experiments across four public datasets demonstrate that AdaInit significantly enhances QNN's trainability compared to classic initialization methods, validating its effectiveness in mitigating BPs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.