Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Integrated demand-side management and timetabling for an urban transit system: A Benders decomposition approach (2502.12952v1)

Published 18 Feb 2025 in math.OC

Abstract: The intelligent upgrading of metropolitan rail transit systems has made it feasible to implement demand-side management policies that integrate multiple operational strategies in practical operations. However, the tight interdependence between supply and demand necessitates a coordinated approach combining demand-side management policies and supply-side resource allocations to enhance the urban rail transit ecosystem. In this study, we propose a mathematical and computational framework that optimizes train timetables, passenger flow control strategies, and trip-shifting plans through the pricing policy. Our framework incorporates an emerging trip-booking approach that transforms waiting at the stations into waiting at home, thereby mitigating station overcrowding. Additionally, it ensures service fairness by maintaining an equitable likelihood of delays across different stations. We formulate the problem as an integer linear programming model, aiming to minimize passengers' waiting time and government subsidies required to offset revenue losses from fare discounts used to encourage trip shifting. To improve computational efficiency, we develop a Benders decomposition-based algorithm within the branch-and-cut method, which decomposes the model into train timetabling with partial passenger assignment and passenger flow control subproblems. We propose valid inequalities based on our model's properties to strengthen the linear relaxation bounds at each node. Computational results from proof-of-concept and real-world case studies on the Beijing metro show that our solution method outperforms commercial solvers in terms of computational efficiency. We can obtain high-quality solutions, including optimal ones, at the root node with reduced branching requirements thanks to our novel decomposition framework and valid inequalities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: