Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Neural SDE Training using Wiener-Space Cubature

Published 18 Feb 2025 in cs.LG | (2502.12395v1)

Abstract: A neural stochastic differential equation (SDE) is an SDE with drift and diffusion terms parametrized by neural networks. The training procedure for neural SDEs consists of optimizing the SDE vector field (neural network) parameters to minimize the expected value of an objective functional on infinite-dimensional path-space. Existing training techniques focus on methods to efficiently compute path-wise gradients of the objective functional with respect to these parameters, then pair this with Monte-Carlo simulation to estimate the expectation, and stochastic gradient descent to optimize. In this work we introduce a novel training technique which bypasses and improves upon Monte-Carlo simulation; we extend results in the theory of Wiener-space cubature to approximate the expected objective functional by a weighted sum of deterministic ODE solutions. This allows us to compute gradients by efficient ODE adjoint methods. Furthermore, we exploit a high-order recombination scheme to drastically reduce the number of ODE solutions necessary to achieve a reasonable approximation. We show that this Wiener-space cubature approach can surpass the O(1/sqrt(n)) rate of Monte-Carlo simulation, or the O(log(n)/n) rate of quasi-Monte-Carlo, to achieve a O(1/n) rate under reasonable assumptions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.