Circuit Partitioning and Full Circuit Execution: A Comparative Study of GPU-Based Quantum Circuit Simulation (2502.11385v1)
Abstract: Executing large quantum circuits is not feasible using the currently available NISQ (noisy intermediate-scale quantum) devices. The high costs of using real quantum devices make it further challenging to research and develop quantum algorithms. As a result, performing classical simulations is usually the preferred method for researching and validating large-scale quantum algorithms. However, these simulations require a huge amount of resources, as each additional qubit exponentially increases the computational space required. Distributed Quantum Computing (DQC) is a promising alternative to reduce the resources required for simulating large quantum algorithms at the cost of increased runtime. This study presents a comparative analysis of two simulation methods: circuit-splitting and full-circuit execution using distributed memory, each having a different type of overhead. The first method, using CutQC, cuts the circuit into smaller subcircuits and allows us to simulate a large quantum circuit on smaller machines. The second method, using Qiskit-Aer-GPU, distributes the computational space across a distributed memory system to simulate the entire quantum circuit. Results indicate that full-circuit executions are faster than circuit-splitting for simulations performed on a single node. However, circuit-splitting simulations show promising results in specific scenarios as the number of qubits is scaled.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.