Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CL-MFAP: A Contrastive Learning-Based Multimodal Foundation Model for Molecular Property Prediction and Antibiotic Screening (2502.11001v1)

Published 16 Feb 2025 in q-bio.BM, cs.AI, cs.LG, and q-bio.QM

Abstract: Due to the rise in antimicrobial resistance, identifying novel compounds with antibiotic potential is crucial for combatting this global health issue. However, traditional drug development methods are costly and inefficient. Recognizing the pressing need for more effective solutions, researchers have turned to machine learning techniques to streamline the prediction and development of novel antibiotic compounds. While foundation models have shown promise in antibiotic discovery, current mainstream efforts still fall short of fully leveraging the potential of multimodal molecular data. Recent studies suggest that contrastive learning frameworks utilizing multimodal data exhibit excellent performance in representation learning across various domains. Building upon this, we introduce CL-MFAP, an unsupervised contrastive learning (CL)-based multimodal foundation (MF) model specifically tailored for discovering small molecules with potential antibiotic properties (AP) using three types of molecular data. This model employs 1.6 million bioactive molecules with drug-like properties from the ChEMBL dataset to jointly pretrain three encoders: (1) a transformer-based encoder with rotary position embedding for processing SMILES strings; (2) another transformer-based encoder, incorporating a novel bi-level routing attention mechanism to handle molecular graph representations; and (3) a Morgan fingerprint encoder using a multilayer perceptron, to achieve the contrastive learning purpose. The CL-MFAP outperforms baseline models in antibiotic property prediction by effectively utilizing different molecular modalities and demonstrates superior domain-specific performance when fine-tuned for antibiotic-related property prediction tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube