Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Weakly supervised anomaly detection for resonant new physics in the dijet final state using proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector (2502.09770v1)

Published 13 Feb 2025 in hep-ex

Abstract: An anomaly detection search for narrow-width resonances beyond the Standard Model that decay into a pair of jets is presented. The search is based on 139 fb${-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded during 2015-2018 with the ATLAS detector at the Large Hadron Collider. The analysis is optimized without a particular signal model and aims to be sensitive to a broad range of new physics. It uses two different machine learning strategies to estimate the background in different signal regions. In each region, a weakly supervised classifier is trained to distinguish this background estimate from data. The analysis focuses on events with high transverse momentum jets reconstructed as large-radius jets. The mass and substructure of these jets are used as inputs to the classifiers. After a classifier-based selection, the distribution of the invariant mass of the two jets is used to search for potential local excesses. The model-independent results of both the anomaly detection methods show no signs of significant local excesses. In addition to model-independent results, a representative set of signal models is injected into the data, and the sensitivity of the methods to these scenarios is reported.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: