Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

APT-LLM: Embedding-Based Anomaly Detection of Cyber Advanced Persistent Threats Using Large Language Models (2502.09385v1)

Published 13 Feb 2025 in cs.CR

Abstract: Advanced Persistent Threats (APTs) pose a major cybersecurity challenge due to their stealth and ability to mimic normal system behavior, making detection particularly difficult in highly imbalanced datasets. Traditional anomaly detection methods struggle to effectively differentiate APT-related activities from benign processes, limiting their applicability in real-world scenarios. This paper introduces APT-LLM, a novel embedding-based anomaly detection framework that integrates LLMs -- BERT, ALBERT, DistilBERT, and RoBERTa -- with autoencoder architectures to detect APTs. Unlike prior approaches, which rely on manually engineered features or conventional anomaly detection models, APT-LLM leverages LLMs to encode process-action provenance traces into semantically rich embeddings, capturing nuanced behavioral patterns. These embeddings are analyzed using three autoencoder architectures -- Baseline Autoencoder (AE), Variational Autoencoder (VAE), and Denoising Autoencoder (DAE) -- to model normal process behavior and identify anomalies. The best-performing model is selected for comparison against traditional methods. The framework is evaluated on real-world, highly imbalanced provenance trace datasets from the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004\% of the data across multiple operating systems (Android, Linux, BSD, and Windows) and attack scenarios. Results demonstrate that APT-LLM significantly improves detection performance under extreme imbalance conditions, outperforming existing anomaly detection methods and highlighting the effectiveness of LLM-based feature extraction in cybersecurity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: