Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mechanistic Unveiling of Transformer Circuits: Self-Influence as a Key to Model Reasoning

Published 13 Feb 2025 in cs.AI | (2502.09022v2)

Abstract: Transformer-based LLMs have achieved significant success; however, their internal mechanisms remain largely opaque due to the complexity of non-linear interactions and high-dimensional operations. While previous studies have demonstrated that these models implicitly embed reasoning trees, humans typically employ various distinct logical reasoning mechanisms to complete the same task. It is still unclear which multi-step reasoning mechanisms are used by LLMs to solve such tasks. In this paper, we aim to address this question by investigating the mechanistic interpretability of LLMs, particularly in the context of multi-step reasoning tasks. Specifically, we employ circuit analysis and self-influence functions to evaluate the changing importance of each token throughout the reasoning process, allowing us to map the reasoning paths adopted by the model. We apply this methodology to the GPT-2 model on a prediction task (IOI) and demonstrate that the underlying circuits reveal a human-interpretable reasoning process used by the model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.