Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Iterative Block Matrix Inversion (IBMI) Algorithm for Symmetric Positive Definite Matrices with Applications to Covariance Matrices (2502.06377v1)

Published 10 Feb 2025 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Obtaining the inverse of a large symmetric positive definite matrix $\mathcal{A}\in\mathbb{R}{p\times p}$ is a continual challenge across many mathematical disciplines. The computational complexity associated with direct methods can be prohibitively expensive, making it infeasible to compute the inverse. In this paper, we present a novel iterative algorithm (IBMI), which is designed to approximate the inverse of a large, dense, symmetric positive definite matrix. The matrix is first partitioned into blocks, and an iterative process using block matrix inversion is repeated until the matrix approximation reaches a satisfactory level of accuracy. We demonstrate that the two-block, non-overlapping approach converges for any positive definite matrix, while numerical results provide strong evidence that the multi-block, overlapping approach also converges for such matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.