An Iterative Block Matrix Inversion (IBMI) Algorithm for Symmetric Positive Definite Matrices with Applications to Covariance Matrices (2502.06377v1)
Abstract: Obtaining the inverse of a large symmetric positive definite matrix $\mathcal{A}\in\mathbb{R}{p\times p}$ is a continual challenge across many mathematical disciplines. The computational complexity associated with direct methods can be prohibitively expensive, making it infeasible to compute the inverse. In this paper, we present a novel iterative algorithm (IBMI), which is designed to approximate the inverse of a large, dense, symmetric positive definite matrix. The matrix is first partitioned into blocks, and an iterative process using block matrix inversion is repeated until the matrix approximation reaches a satisfactory level of accuracy. We demonstrate that the two-block, non-overlapping approach converges for any positive definite matrix, while numerical results provide strong evidence that the multi-block, overlapping approach also converges for such matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.