Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Barriers and Pathways to Human-AI Alignment: A Game-Theoretic Approach (2502.05934v1)

Published 9 Feb 2025 in cs.AI, cs.CC, cs.GT, cs.LG, and cs.MA

Abstract: Under what conditions can capable AI agents efficiently align their actions with human preferences? More specifically, when they are proficient enough to collaborate with us, how long does coordination take, and when is it computationally feasible? These foundational questions of AI alignment help define what makes an AI agent ``sufficiently safe'' and valuable to humans. Since such generally capable systems do not yet exist, a theoretical analysis is needed to establish when guarantees hold -- and what they even are. We introduce a game-theoretic framework that generalizes prior alignment approaches with fewer assumptions, allowing us to analyze the computational complexity of alignment across $M$ objectives and $N$ agents, providing both upper and lower bounds. Unlike previous work, which often assumes common priors, idealized communication, or implicit tractability, our framework formally characterizes the difficulty of alignment under minimal assumptions. Our main result shows that even when agents are fully rational and computationally \emph{unbounded}, alignment can be achieved with high probability in time \emph{linear} in the task space size. Therefore, in real-world settings, where task spaces are often \emph{exponential} in input length, this remains impractical. More strikingly, our lower bound demonstrates that alignment is \emph{impossible} to speed up when scaling to exponentially many tasks or agents, highlighting a fundamental computational barrier to scalable alignment. Relaxing these idealized assumptions, we study \emph{computationally bounded} agents with noisy messages (representing obfuscated intent), showing that while alignment can still succeed with high probability, it incurs additional \emph{exponential} slowdowns in the task space size, number of agents, and number of tasks. We conclude by identifying conditions that make alignment more feasible.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 32 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube