Toward universal steering and monitoring of AI models (2502.03708v2)
Abstract: Modern AI models contain much of human knowledge, yet understanding of their internal representation of this knowledge remains elusive. Characterizing the structure and properties of this representation will lead to improvements in model capabilities and development of effective safeguards. Building on recent advances in feature learning, we develop an effective, scalable approach for extracting linear representations of general concepts in large-scale AI models (LLMs, vision-LLMs, and reasoning models). We show how these representations enable model steering, through which we expose vulnerabilities, mitigate misaligned behaviors, and improve model capabilities. Additionally, we demonstrate that concept representations are remarkably transferable across human languages and combinable to enable multi-concept steering. Through quantitative analysis across hundreds of concepts, we find that newer, larger models are more steerable and steering can improve model capabilities beyond standard prompting. We show how concept representations are effective for monitoring misaligned content (hallucinations, toxic content). We demonstrate that predictive models built using concept representations are more accurate for monitoring misaligned content than using models that judge outputs directly. Together, our results illustrate the power of using internal representations to map the knowledge in AI models, advance AI safety, and improve model capabilities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.