Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lieb-Robinson bounds with exponential-in-volume tails (2502.02652v1)

Published 4 Feb 2025 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, math-ph, and math.MP

Abstract: Lieb-Robinson bounds demonstrate the emergence of locality in many-body quantum systems. Intuitively, Lieb-Robinson bounds state that with local or exponentially decaying interactions, the correlation that can be built up between two sites separated by distance $r$ after a time $t$ decays as $\exp(vt-r)$, where $v$ is the emergent Lieb-Robinson velocity. In many problems, it is important to also capture how much of an operator grows to act on $rd$ sites in $d$ spatial dimensions. Perturbation theory and cluster expansion methods suggest that at short times, these volume-filling operators are suppressed as $\exp(-rd)$ at short times. We confirm this intuition, showing that for $r > vt$, the volume-filling operator is suppressed by $\exp(-(r-vt)d/(vt){d-1})$. This closes a conceptual and practical gap between the cluster expansion and the Lieb-Robinson bound. We then present two very different applications of this new bound. Firstly, we obtain improved bounds on the classical computational resources necessary to simulate many-body dynamics with error tolerance $\epsilon$ for any finite time $t$: as $\epsilon$ becomes sufficiently small, only $\epsilon{-O(t{d-1})}$ resources are needed. A protocol that likely saturates this bound is given. Secondly, we prove that disorder operators have volume-law suppression near the "solvable (Ising) point" in quantum phases with spontaneous symmetry breaking, which implies a new diagnostic for distinguishing many-body phases of quantum matter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.