Papers
Topics
Authors
Recent
2000 character limit reached

CH-MARL: Constrained Hierarchical Multiagent Reinforcement Learning for Sustainable Maritime Logistics (2502.02060v1)

Published 4 Feb 2025 in cs.AI and cs.MA

Abstract: Addressing global challenges such as greenhouse gas emissions and resource inequity demands advanced AI-driven coordination among autonomous agents. We propose CH-MARL (Constrained Hierarchical Multiagent Reinforcement Learning), a novel framework that integrates hierarchical decision-making with dynamic constraint enforcement and fairness-aware reward shaping. CH-MARL employs a real-time constraint-enforcement layer to ensure adherence to global emission caps, while incorporating fairness metrics that promote equitable resource distribution among agents. Experiments conducted in a simulated maritime logistics environment demonstrate considerable reductions in emissions, along with improvements in fairness and operational efficiency. Beyond this domain-specific success, CH-MARL provides a scalable, generalizable solution to multi-agent coordination challenges in constrained, dynamic settings, thus advancing the state of the art in reinforcement learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.