CH-MARL: Constrained Hierarchical Multiagent Reinforcement Learning for Sustainable Maritime Logistics (2502.02060v1)
Abstract: Addressing global challenges such as greenhouse gas emissions and resource inequity demands advanced AI-driven coordination among autonomous agents. We propose CH-MARL (Constrained Hierarchical Multiagent Reinforcement Learning), a novel framework that integrates hierarchical decision-making with dynamic constraint enforcement and fairness-aware reward shaping. CH-MARL employs a real-time constraint-enforcement layer to ensure adherence to global emission caps, while incorporating fairness metrics that promote equitable resource distribution among agents. Experiments conducted in a simulated maritime logistics environment demonstrate considerable reductions in emissions, along with improvements in fairness and operational efficiency. Beyond this domain-specific success, CH-MARL provides a scalable, generalizable solution to multi-agent coordination challenges in constrained, dynamic settings, thus advancing the state of the art in reinforcement learning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.