Papers
Topics
Authors
Recent
2000 character limit reached

Sampling Binary Data by Denoising through Score Functions (2502.00557v1)

Published 1 Feb 2025 in stat.ML and cs.LG

Abstract: Gaussian smoothing combined with a probabilistic framework for denoising via the empirical Bayes formalism, i.e., the Tweedie-Miyasawa formula (TMF), are the two key ingredients in the success of score-based generative models in Euclidean spaces. Smoothing holds the key for easing the problem of learning and sampling in high dimensions, denoising is needed for recovering the original signal, and TMF ties these together via the score function of noisy data. In this work, we extend this paradigm to the problem of learning and sampling the distribution of binary data on the Boolean hypercube by adopting Bernoulli noise, instead of Gaussian noise, as a smoothing device. We first derive a TMF-like expression for the optimal denoiser for the Hamming loss, where a score function naturally appears. Sampling noisy binary data is then achieved using a Langevin-like sampler which we theoretically analyze for different noise levels. At high Bernoulli noise levels sampling becomes easy, akin to log-concave sampling in Euclidean spaces. In addition, we extend the sequential multi-measurement sampling of Saremi et al. (2024) to the binary setting where we can bring the "effective noise" down by sampling multiple noisy measurements at a fixed noise level, without the need for continuous-time stochastic processes. We validate our formalism and theoretical findings by experiments on synthetic data and binarized images.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.