Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients (2502.00025v3)

Published 21 Jan 2025 in cs.LG, cs.AI, and cs.CY

Abstract: Importance: Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days. Traditional machine learning models for predicting these returns often lack interpretability for clinical use. Objective: To assess whether integrating LLMs with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models. Methods: This retrospective cohort study analyzed 42,464 ED visits for 27,904 unique mental health patients at an academic medical center in the Deep South from January 2018 to December 2022. Main Outcomes and Measures: Two primary outcomes were evaluated: (1) 30-day ED return prediction accuracy and (2) model interpretability using a novel LLM-enhanced framework integrating SHAP (SHapley Additive exPlanations) values with clinical knowledge. Results: For chief complaint classification, LLaMA 3 (8B) with 10-shot learning outperformed traditional models (accuracy: 0.882, F1-score: 0.86). In SDoH classification, LLM-based models achieved 0.95 accuracy and 0.96 F1-score, with Alcohol, Tobacco, and Substance Abuse performing best (F1: 0.96-0.89), while Exercise and Home Environment showed lower performance (F1: 0.70-0.67). The LLM-based interpretability framework achieved 99% accuracy in translating model predictions into clinically relevant explanations. LLM-extracted features improved XGBoost AUC from 0.74 to 0.76 and AUC-PR from 0.58 to 0.61. Conclusions and Relevance: Integrating LLMs with machine learning models yielded modest but consistent accuracy gains while significantly enhancing interpretability through automated, clinically relevant explanations. This approach provides a framework for translating predictive analytics into actionable clinical insights.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube