Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Complex network approaches to nonlinear time series analysis (2501.18737v1)

Published 30 Jan 2025 in physics.data-an, math-ph, math.MP, and nlin.CD

Abstract: In the last decade, there has been a growing body of literature addressing the utilization of complex network methods for the characterization of dynamical systems based on time series. While both nonlinear time series analysis and complex network theory are widely considered to be established fields of complex systems sciences with strong links to nonlinear dynamics and statistical physics, the thorough combination of both approaches has become an active field of nonlinear time series analysis, which has allowed addressing fundamental questions regarding the structural organization of nonlinear dynamics as well as the successful treatment of a variety of applications from a broad range of disciplines. In this report, we provide an in-depth review of existing approaches of time series networks, covering their methodological foundations, interpretation and practical considerations with an emphasis on recent developments. After a brief outline of the state-of-the-art of nonlinear time series analysis and the theory of complex networks, we focus on three main network approaches, namely, phase space based recurrence networks, visibility graphs and Markov chain based transition networks, all of which have made their way from abstract concepts to widely used methodologies. These three concepts, as well as several variants thereof will be discussed in great detail regarding their specific properties, potentials and limitations. More importantly, we emphasize which fundamental new insights complex network approaches bring into the field of nonlinear time series analysis. In addition, we summarize examples from the wide range of recent applications of these methods, covering rather diverse fields like climatology, fluid dynamics, neurophysiology, engineering and economics, and demonstrating the great potentials of time series networks for tackling real-world contemporary scientific problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube