Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Useful trick to compute correlation functions of composite operators (2501.17138v3)

Published 28 Jan 2025 in hep-th, math-ph, and math.MP

Abstract: In general, in gauge field theories, physical observables are represented by gauge-invariant composite operators, such as the electromagnetic current. As we recently demonstrated in the context of the $U\left(1\right)$ and $SU\left(2\right)$ Higgs models \cite{Dudal:2019pyg,Dudal:2020uwb,Maas:2020kda}, correlation functions of gauge-invariant operators exhibit very nice properties. Besides the well-known gauge independence, they do not present unphysical cuts, and their K\"{a}ll\'{e}n-Lehmann representations are positive, at least perturbatively. Despite all these interesting features, they are not employed as much as elementary fields, mainly due to the additional complexities involved in their computation and renormalization. In this article, we present a useful trick to compute loop corrections to correlation functions of composite operators. This trick consists of introducing an additional field with no dynamics, coupled to the composite operator of interest. By using this approach, we can employ the traditional algorithms used to compute correlation functions of elementary fields.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.