Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Benchmarking Model Predictive Control and Reinforcement Learning Based Control for Legged Robot Locomotion in MuJoCo Simulation (2501.16590v1)

Published 28 Jan 2025 in cs.RO, cs.SY, and eess.SY

Abstract: Model Predictive Control (MPC) and Reinforcement Learning (RL) are two prominent strategies for controlling legged robots, each with unique strengths. RL learns control policies through system interaction, adapting to various scenarios, whereas MPC relies on a predefined mathematical model to solve optimization problems in real-time. Despite their widespread use, there is a lack of direct comparative analysis under standardized conditions. This work addresses this gap by benchmarking MPC and RL controllers on a Unitree Go1 quadruped robot within the MuJoCo simulation environment, focusing on a standardized task-straight walking at a constant velocity. Performance is evaluated based on disturbance rejection, energy efficiency, and terrain adaptability. The results show that RL excels in handling disturbances and maintaining energy efficiency but struggles with generalization to new terrains due to its dependence on learned policies tailored to specific environments. In contrast, MPC shows enhanced recovery capabilities from larger perturbations by leveraging its optimization-based approach, allowing for a balanced distribution of control efforts across the robot's joints. The results provide a clear understanding of the advantages and limitations of both RL and MPC, offering insights into selecting an appropriate control strategy for legged robotic applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.