Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Neural Networks: A Comparative Analysis and Noise Robustness Evaluation

Published 24 Jan 2025 in quant-ph | (2501.14412v1)

Abstract: In current noisy intermediate-scale quantum (NISQ) devices, hybrid quantum neural networks (HQNNs) offer a promising solution, combining the strengths of classical machine learning with quantum computing capabilities. However, the performance of these networks can be significantly affected by the quantum noise inherent in NISQ devices. In this paper, we conduct an extensive comparative analysis of various HQNN algorithms, namely Quantum Convolution Neural Network (QCNN), Quanvolutional Neural Network (QuanNN), and Quantum Transfer Learning (QTL), for image classification tasks. We evaluate the performance of each algorithm across quantum circuits with different entangling structures, variations in layer count, and optimal placement in the architecture. Subsequently, we select the highest-performing architectures and assess their robustness against noise influence by introducing quantum gate noise through Phase Flip, Bit Flip, Phase Damping, Amplitude Damping, and the Depolarizing Channel. Our results reveal that the top-performing models exhibit varying resilience to different noise gates. However, in most scenarios, the QuanNN demonstrates greater robustness across various quantum noise channels, consistently outperforming other models. This highlights the importance of tailoring model selection to specific noise environments in NISQ devices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.