Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Reservoir Computing and Risk Bounds (2501.08640v1)

Published 15 Jan 2025 in cs.LG and stat.ML

Abstract: We propose a way to bound the generalisation errors of several classes of quantum reservoirs using the Rademacher complexity. We give specific, parameter-dependent bounds for two particular quantum reservoir classes. We analyse how the generalisation bounds scale with growing numbers of qubits. Applying our results to classes with polynomial readout functions, we find that the risk bounds converge in the number of training samples. The explicit dependence on the quantum reservoir and readout parameters in our bounds can be used to control the generalisation error to a certain extent. It should be noted that the bounds scale exponentially with the number of qubits $n$. The upper bounds on the Rademacher complexity can be applied to other reservoir classes that fulfill a few hypotheses on the quantum dynamics and the readout function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper derives parameter-dependent generalization error bounds via Rademacher complexity for quantum reservoir classes.
  • It employs polynomial readout functions to establish explicit bounds for both PTR and RRR reservoir models while analyzing qubit count scaling.
  • The findings demonstrate convergence of risk bounds with increased training samples and highlight limitations due to exponential qubit scaling.

The paper addresses the problem of bounding the generalization errors in quantum reservoir computing using Rademacher complexity. The authors derive parameter-dependent bounds for two specific quantum reservoir classes and analyze how these bounds scale with an increasing number of qubits. The paper focuses on quantum reservoirs with polynomial readout functions, demonstrating that the risk bounds converge as the number of training samples grows.

The paper is structured as follows:

  1. Introduction: Introduces the topic of quantum reservoir computing and the importance of bounding generalization errors.
  2. Framework: Sets up the theoretical framework for analyzing quantum reservoirs.
  3. General Assumptions: Establishes general assumptions on the data distribution and quantum reservoir classes.
  4. Rademacher Complexity Bounds: Derives bounds on the Rademacher complexity for specific readout functions.
  5. Specialized Subclasses: Introduces two specialized subclasses of quantum reservoirs.
  6. Generalization Bounds: Presents generalization bounds for the quantum reservoir classes under consideration.
  7. Discussion: Discusses the implications and limitations of the results.

Key aspects of the work include:

  • The authors use Rademacher complexity to quantify the generalization ability of quantum reservoirs. Rademacher complexity is a measure of the richness of a function class, which in this case, is the class of functions implemented by the quantum reservoir.
  • The generalization bounds are parameter-dependent, explicitly showing how the error scales with the quantum reservoir and readout parameters. This allows for a degree of control over the generalization error.
  • The derived bounds scale exponentially with the number of qubits nn, which is a limitation. This exponential scaling is a common challenge in quantum machine learning due to the exponentially growing Hilbert space.
  • The upper bounds on the Rademacher complexity are applicable to other reservoir classes that satisfy certain hypotheses regarding quantum dynamics and readout functions, suggesting the potential for broader applications.

The authors derive explicit risk bounds for two quantum reservoir classes, parameterized by RmaxR_{\text{max}} and CmaxC_{\text{max}}, denoted as Hn,Rmax,CmaxPTR\mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{PTR}} and Hn,Rmax,CmaxRRR\mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{RRR}}. For the Polynomial Time Reservoir (PTR) class Hn,Rmax,CmaxPTR\mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{PTR}}, the risk bound is given by:

supHHn,Rmax,CmaxPTRR(H)R^_m(H)(C0P(n,Rmax,ϵPTR)+C1(n,Rmax,ζmax))1m+C2P(n,Rmax,ζmax,Cmax)logmm+C3P(n,Rmax,ζmax,ΘPTR,Cmax)logmm+C4P(n,Rmax,ζmax,ϵPTR)log4/δ2m\sup_{H \in \mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{PTR}}} \left| R(H) - \hat{R}\_m(H) \right| \leq \left( C_0^P \left( n, R_{\text{max}}, \epsilon_{\text{PTR}} \right) + C_1 \left( n, R_{\text{max}}, \zeta_{\text{max}} \right) \right) \frac{1}{m} + C_2^P \left( n, R_{\text{max}}, \zeta_{\text{max}}, C_{\text{max}} \right) \frac{ \log{m} }{m} + C_3^P \left( n, R_{\text{max}}, \zeta_{\text{max}}, \left| \Theta_{\text{PTR}} \right|, C_{\text{max}} \right) \sqrt{\frac{ \log{m} }{m}} + C_4^P \left( n, R_{\text{max}}, \zeta_{\text{max}}, \epsilon_{\text{PTR}} \right) \sqrt{ \frac{\log{4/\delta}}{2 m} }

where:

  • R(H)R(H) is the true risk of the hypothesis HH.
  • R^_m(H)\hat{R}\_m(H) is the empirical risk on mm samples.
  • nn is the number of qubits.
  • RmaxR_{\text{max}} and CmaxC_{\text{max}} are parameters of the reservoir class.
  • ϵPTR\epsilon_{\text{PTR}} is a parameter related to the PTR reservoir.
  • ζmax=max(r,Dwy,Dwv)\zeta_{\text{max}} = \max (r, D_{w^y}, D_{w^v}) with rr being the contractivity, DwyD_{w^y} the dissipation of the output, and DwvD_{w^v} the dissipation of the input.
  • ΘPTR\Theta_{\text{PTR}} is the parameter set for the PTR reservoir.
  • C0P,C1,C2P,C3PC_0^P, C_1, C_2^P, C_3^P, and C4PC_4^P are constants that depend on the parameters of the reservoir class, the data distribution, and the loss function.

For the Randomly Reed-Muller Reservoir (RRR) class Hn,Rmax,CmaxRRR\mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{RRR}}, two scenarios are considered based on the relationship between r0r_0 and r1r_1. If r0=r1=r0,1r_0 = r_1 = r_{0,1}, the risk bound is:

supHHn,Rmax,CmaxRRRR(H)R^_m(H)(C0a,R(n,Rmax,αmin,r0,1)+C1(n,Rmax,ζmax))1m+C2R(n,Rmax,ζmax,Cmax,αmin)logmm+C3R(n,Rmax,ζmax,ΘRRR,Cmax)logmm+C4a,R(n,Rmax,ζmax,αmin,r0,1)log4/δ2m\sup_{H \in \mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{RRR}}} \left| R(H) - \hat{R}\_m(H) \right| \leq \left( C_0^{a,R} \left( n, R_{\text{max}}, \alpha_{\text{min}}, r_{0,1} \right) + C_1 \left( n, R_{\text{max}}, \zeta_{\text{max}} \right) \right) \frac{1}{m} + C_2^R \left( n, R_{\text{max}}, \zeta_{\text{max}}, C_{\text{max}}, \alpha_{\text{min}} \right) \frac{ \log{m} }{m} + C_3^R \left( n, R_{\text{max}}, \zeta_{\text{max}}, \left| \Theta_{\text{RRR}} \right|, C_{\text{max}} \right) \sqrt{\frac{ \log{m} }{m}} + C_4^{a, R} \left( n, R_{\text{max}}, \zeta_{\text{max}}, \alpha_{\text{min}}, r_{0,1} \right) \sqrt{ \frac{\log{4/\delta}}{2 m} }

If r0>r1r_0 > r_1, the risk bound is:

supHHn,Rmax,CmaxRRRR(H)R^_m(H)(C0b,R(n,Rmax,ϵRRR)+C1(n,Rmax,ζmax))1m+C2R(n,Rmax,ζmax,Cmax,αmin)logmm+C3R(n,Rmax,ζmax,ΘRRR,Cmax)logmm+C4b,R(n,Rmax,ζmax,αmin,ϵRRR)log4/δ2m\sup_{H \in \mathcal{H}_{n, R_{\text{max}}, C_{\text{max}}}^{\text{RRR}}} \left| R(H) - \hat{R}\_m(H) \right| \leq \left( C_0^{b, R} \left( n, R_{\text{max}}, \epsilon_{\text{RRR}} \right) + C_1 \left( n, R_{\text{max}}, \zeta_{\text{max}} \right) \right) \frac{1}{m} + C_2^R \left( n, R_{\text{max}}, \zeta_{\text{max}}, C_{\text{max}}, \alpha_{\text{min}} \right) \frac{ \log{m} }{m} + C_3^R \left( n, R_{\text{max}}, \zeta_{\text{max}}, \left| \Theta_{\text{RRR}} \right|, C_{\text{max}} \right) \sqrt{\frac{ \log{m} }{m}} + C_4^{b, R} \left( n, R_{\text{max}}, \zeta_{\text{max}}, \alpha_{\text{min}}, \epsilon_{\text{RRR}} \right) \sqrt{ \frac{\log{4/\delta}}{2 m} }

where:

  • αmin\alpha_{\text{min}} is a parameter related to the RRR reservoir.
  • r0,1r_{0,1} is a contractivity parameter when r0=r1r_0 = r_1.
  • ϵRRR\epsilon_{\text{RRR}} is a parameter related to the RRR reservoir when r0>r1r_0 > r_1.
  • ΘRRR\Theta_{\text{RRR}} is the parameter set for the RRR reservoir.
  • C0a,R,C0b,R,C2R,C3R,C4a,RC_0^{a, R}, C_0^{b, R}, C_2^R, C_3^R, C_4^{a, R}, and C4b,RC_4^{b, R} are constants that depend on the parameters of the reservoir class, the data distribution, and the loss function.

The authors acknowledge support from European Union’s Horizon 2020, ANR projects Q-COAST and IGNITION, and the Institute for Mathematical and Statistical Innovation (IMSI).

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube